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Careful reassessment of new and pre-existing data shows that recorded scatter in the
hot-wire-measured near-wall peak in viscous-scaled streamwise turbulence intensity
is due in large part to the simultaneous competing effects of the Reynolds number
and viscous-scaled wire length l+. An empirical expression is given to account for
these effects. These competing factors can explain much of the disparity in existing
literature, in particular explaining how previous studies have incorrectly concluded
that the inner-scaled near-wall peak is independent of the Reynolds number. We
also investigate the appearance of the so-called outer peak in the broadband
streamwise intensity, found by some researchers to occur within the log region of
high-Reynolds-number boundary layers. We show that the ‘outer peak’ is consistent
with the attenuation of small scales due to large l+. For turbulent boundary layers, in
the absence of spatial resolution problems, there is no outer peak up to the Reynolds
numbers investigated here (Reτ = 18 830). Beyond these Reynolds numbers – and
for internal geometries – the existence of such peaks remains open to debate. Fully
mapped energy spectra, obtained with a range of l+, are used to demonstrate this
phenomenon. We also establish the basis for a ‘maximum flow frequency’, a minimum
time scale that the full experimental system must be capable of resolving, in order to
ensure that the energetic scales are not attenuated. It is shown that where this criterion
is not met (in this instance due to insufficient anemometer/probe response), an outer
peak can be reproduced in the streamwise intensity even in the absence of spatial
resolution problems. It is also shown that attenuation due to wire length can erode the
region of the streamwise energy spectra in which we would normally expect to see k−1

x

scaling. In doing so, we are able to rationalize much of the disparity in pre-existing
literature over the k−1

x region of self-similarity. Not surprisingly, the attenuated spectra
also indicate that Kolmogorov-scaled spectra are subject to substantial errors due to
wire spatial resolution issues. These errors persist to wavelengths far beyond those
which we might otherwise assume from simple isotropic assumptions of small-scale
motions. The effects of hot-wire length-to-diameter ratio (l/d) are also briefly
investigated. For the moderate wire Reynolds numbers investigated here, reducing
l/d from 200 to 100 has a detrimental effect on measured turbulent fluctuations at a
wide range of energetic scales, affecting both the broadband intensity and the energy
spectra.
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1. Introduction
The spatial attenuation owing to an idealized spanwise sensor (which measures

streamwise velocity u) is, in principle, a simple function of the evaluated integral of
velocity fluctuation across that transverse element. For turbulent flows, this process
is complicated by the fact that the velocity fluctuations are time dependent and are
composed instantaneously of multiple overlapping and interacting scales. In wall-
bounded turbulence these velocity fluctuations are also highly anisotropic and subject
to complex, and often disputed, scaling conditions, both of which raise questions over
the applicability of isotropic assumptions in providing theoretical corrections (e.g.
Wyngaard 1968). As such, the degree of attenuation due to the single spanwise element
will be highly dependent on the spectral composition of the turbulent fluctuations.
Specifically, we must consider the width of the energetic fluctuations, as compared
to the spanwise integral length of the sensor element. Since isotropic assumptions
are not really applicable in boundary layers (other than for very high wavenumbers),
this requires spectral information in the spanwise direction (i.e. we need the energy
contribution at each spanwise wavenumber ky). In general, such information is not
readily available from experiment (although it could, in theory, be obtained from
detailed spanwise correlation measurements). In the interim, we can look to direct
numerical simulations (DNS), which indicate that the spanwise spectral composition
of u fluctuation is a complex function of distance from the wall (z) and the Reynolds
number Re (see for instance Abe, Kawamura & Choi 2004; del Álamo et al. 2004;
Kasagi, Fukagata & Suzuki 2005; Hutchins & Marusic 2007a). Until such time that
realistic functional forms exist to describe this energy content for a given z and
Reynolds number, the onus will continue to rest with experimental data in providing
guidelines for spatial attenuation of hot-wire sensors. Throughout this paper, x, y

and z will be used to denote the streamwise, spanwise and wall-normal axes, with u,
v and w denoting the respective fluctuating velocity components.

Of the numerous experimental investigations of spatial resolution, that of Ligrani
& Bradshaw (1987, hereinafter referred to as LB87) is by far the most cited. Their
introduction also provides an excellent review of the literature on this subject. Through
exhaustive parametric study of wire length (l) and the length-to-diameter ratio (l/d)
they argue two compelling recommendations for accurate hot-wire measurements in
turbulent boundary layers; namely that the viscous-scaled wire length (l+) should be
less than 20 and that the length-to-diameter ratio should be greater than 200. As
a cautionary note, the experiments of LB87 were conducted at a single, quite low,
Reynolds number and investigated just the attenuation in the immediate near-wall
region of the boundary layer. Since we would expect the actual attenuation to be a
function of the spectral composition of the velocity fluctuations (a complex function
of z and Re), it becomes questionable how applicable the recommendations of LB87
will be to higher Reynolds numbers and away from the near wall.

Several other researchers have experimentally investigated the effects of sensor
length on the measured near-wall velocity fluctuations (e.g. Johansson & Alfredsson
1983; Willmarth & Sharma 1984; Hites 1997; Österlund 1999), although with the
exception of Hites, few have repeated the LB87 approach of several different wire
lengths at a single constant Reynolds number. Hence the information on this subject
is somewhat fragmented across multiple studies, each of which provides limited
(often conflicting) insight into the larger picture. Following the insightful approach
of Klewicki & Falco (1990), we here attempt to redress this problem. In § 3, we
consider simultaneously the effects of the Reynolds number and wire length at a
single (viscous-scaled) distance from the wall (close to the peak in the broadband
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turbulence intensity) and compile the available data from the various studies into a
single reference.

The two decades since the publication of LB87 have seen an increase in the
availability of higher-Reynolds-number turbulent wall-bounded flow data, for example
from the Princeton superpipe (Morrison et al. 2004), the National Diagnostic Facility
at Illinois Institute of Technology in Chicago (Hites 1997), the minimum turbulence
level (MTL) wind tunnel at KTH in Stockholm (Österlund 1999), the High Reynolds
Number Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne
(Nickels et al. 2007) and the large low-speed facility (LLF) at DNW in the Netherlands
(Fernholz et al. 1995). One of the widely discussed facets of these results has been the
emergence of a secondary outer peak in the log region of some of the higher-Reynolds-
number broadband turbulent intensity profiles (Fernholz et al. 1995; Morrison et al.
2004). However, it is noted that these studies have tended to involve substantial
relaxation of the key recommendations of LB87 for hot-wire design. Thus, the need
to extend the spatial resolution findings of LB87 to higher Reynolds numbers (as
attempted here) is particularly pertinent, as is the need to investigate the effects
of spatial resolution away from the immediate near-wall region, on which matter
very little has to date been published. In light of this, we have here (in § § 4 and 5)
set out to address in detail the wider effects of spatial resolution on fluctuating
statistics and energy spectra throughout the log region of turbulent boundary
layers.

Though not strictly a spatial resolution corollary, the issue of wire length-to-
diameter ratio is to some extent bound with the requirement for ever-smaller sensor
lengths as the Reynolds number is increased. At high Re, it is obviously tempting
to maintain small l+ by relaxing l/d rather than using smaller wire diameters (with
attendant loss of mechanical strength). One problem with this approach is that
additional heat is lost to the sensor supports, and this leads to an attenuation of
measured stresses. The proportion of heat lost to the supports depends on both l/d

and the Reynolds number of the sensor. From their experiments, LB87 suggested
a limit of l/d > 200, but this was for a single Reynolds number. Recent numerical
studies by Li et al. (2004) have shown that the proportion of heat loss to the supports
can be maintained at acceptable levels for lower l/d values if the wire Reynolds
number is increased, but the precise limits for real hot-wire measurements are still
not clear. In § 7 we attempt to redress this shortfall, using sensors with deliberately
inadequate l/d to explore the wider effects of the length-to-diameter ratio on the
log-region turbulence intensity and energy spectra.

Occasionally it is difficult to separate the effects due to spatial resolution from
those due to a temporal attenuation of the fluctuating signals. In § 8 we introduce
the notion of a maximum flow frequency. This frequency describes the minimum
energetic time scale that we are likely to encounter in near-wall turbulent boundary
layers. (Certain dissipative scales might have even smaller time scales but, these are
not expected to contribute significantly to the measured broadband intensity.) In § 8
we investigate the consequences for the measured streamwise energy, when these time
scales are not fully resolved.

Throughout this study, we have limited ourselves to consideration of single
spanwise-normal hot wires in a turbulent boundary layer. However, in a more limited
sense, many of the findings ought to be in some way applicable to more complex probe
geometries and wire orientations, as well as providing insight on spatial attenuation
owing to finite interrogation volumes/areas in particle image velocimetry (PIV), laser
Doppler velocimetry (LDV) and pressure-based velocimetry experiments.
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2. Apparatus
2.1. Facility

Experiments were conducted in the HRNBLWT. This is an open-return blower wind
tunnel with a working section of 27 × 2 × 1 m. Measurements are made on the
tunnel floor, between 5 and 21 m downstream of the tripped inlet. The tunnel floor is
constructed from 6 m sections of polished aluminium plate with a root-mean-square
surface roughness that is not greater that 0.1 viscous length scales (ν/Uτ , where ν is
kinematic viscosity and Uτ is the friction velocity). The pressure gradient is nominally
zero, with pressure coefficient (Cp) variation along the entire 27 m length set to within
±1.0 % at 10 m s−1 (Reτ ≈ 7300) and ±0.7 % at 20 and 30 m s−1 (Reτ ≈ 14 000 and
19 000 respectively). Further details of the facility are available in Nickels et al. (2005,
2007).

2.2. Constant-temperature anemometry

With the exception of the measurement at Reτ = 18 830, the hot-wire probes are all
operated in constant-temperature mode using the AN-1003 anemometer (AA Lab
Systems) with overheat ratio 1.8. All channels are option 01, 04 and 12 equipped
(i.e. they have ultra-low noise amplifier, are frequency compensated and have high-
performance signal conditioner). The indicated frequency response of the system to
a 2 kHz internal pulse varied from 70 to 100 kHz (for a description of electronic
testing of anemometer response, see Freymuth 1977a). For the smallest diameter wires
(d = 1.5 μm) which were required at Reτ = 18 830, it was not possible to balance the
AN-1003. In this instance we reverted to the in-house Melbourne University Constant
Temperature Anemometer (MUCTA II) which in this set-up gave an indicated system
frequency response to a 1 kHz external square wave of 135 kHz. Hot-wire signals were
sampled using a Microstar DAP3000a/21 14-bit data-acquisition board. Sampling
frequencies and low-pass filter settings are given in table 1 along with sample intervals.
The hot wires are statically calibrated in situ against a Pitot-static tube pair before and
after each boundary-layer traverse. Third-order polynomial curves are fitted to the
calibration data. Atmospheric conditions are monitored continuously throughout
the experiments using a calibrated thermocouple and an electronic barometer
(144S-BARO, Sensortechnics). Linear interpolation between the pre- and post-
calibration curves is used to correct for temperature drift during the course
of the experiment. Free-stream velocity U∞ is also monitored throughout the
course of the experiment using the same Pitot-static tube pair. If the final hot-wire
velocity reading in the free stream (from the temperature-compensated calibration
curve) does not match the Pitot-static-measured U∞ to within ±0.5 %, the entire
dataset is discarded (which very rarely happens with the 2.5 and 5 μm wires).

2.3. Probes

Platinum sensing elements are fabricated to two boundary-layer-type probe-body
geometries: Dantec 55P05 or 55P15 with prong spacings of 3 and 1.25 mm respectively.
Wollaston wires (of various core diameters d) are soldered to the prong tips and etched
to give a platinum filament of the desired length (l). For the very long wire lengths,
a 55P05 probe body has been modified to give an overall prong spacing of 5 mm.

2.4. Experimental conditions

Table 1 gives the full range of experimental conditions and probe/sensor geometries;
U∞ is the free-stream velocity and Uτ is the friction velocity, determined from a Clauser
fit to the logarithmic portion of the mean velocity data (using constants κ =0.41 and
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U∞ x Reτ ν/Uτ δ probe l l+ d l/d t+ fs flp T U∞/δ |l/η|z = 0.1δ

(ms−1) (m) (μm) (m) (mm) (μm) (kHz) (kHz)

11.97 5 2820 35.0 0.098 55P05 0.76 22† 3.8 200 0.53 24.07 12 14 600 6.7
11.87 8 3910 36.0 0.140 55P05 0.76 21† 3.8 200 0.49 24.07 12 15 200 5.9
10.30 21 7340 44.0 0.319 55P05 1.00 23† 5.0 200 0.34 24.07 12 17 400 5.0
20.54 21 13 620 23.0 0.315 55P15 0.50 22† 2.5 200‡ 0.48 60.06 30 15 700 4.5
30.20 21 18 830 16.0 0.303 55P15 0.35 22† 1.5 233 0.59 101.01 50 12 000 4.2

11.96 5 2 870 35.0 0.099 55P05 1.00 29 5 200 0.53 24.07 12 14 400 8.8

17.24 5 3840 25.0 0.096 55P05 0.76 30 3.8 200 0.41 60.06 30 16 100 8.5
17.25 5 3860 25.0 0.097 55P05 1.00 40 5 200 0.41 60.06 30 16 000 11.3

10.29 21 7370 43.7 0.322 55P15 0.50 11 2.5 200 0.33 24.07 12 17 200 2.6
10.06 21 7440 44.1 0.328 special 3.50 79 5.0 700 0.37 20.83 10 20 200 18.9

13.00 21 9160 35.4 0.324 55P01 1.80 51 5.0 360 0.58 20.83 10 12 000 11.6
13.56 21 9750 33.6 0.327 55P01 1.25 37 5.0 250 0.64 20.83 10 27 300 8.3

20.02 21 13 880 23.4 0.325 55P15 0.50 22 5.0 100‡ 0.67 40.67 20 14 800 4.5
20.04 21 13 220 23.4 0.310 55P15 0.50 22 12.7 39‡ 0.69 40.16 20 7 800 4.6
20.52 21 13 530 23.1 0.313 55P05 1.00 43 5.0 200 0.48 60.06 30 15 700 8.9
20.04 21 14 020 22.7 0.318 55P05 1.80 79 5.0 360 0.69 40.67 20 15 300 16.1
20.04 21 13 900 22.8 0.317 special 3.50 153 5.0 700 0.69 40.67 20 15 200 31.3

30.05 21 20 270 15.6 0.316 55P05 1.80 116 5.0 360 1.49 40.67 20 14 300 21.6

Table 1. Experimental parameters for hot-wire experiments.

† Matched l+ data.
‡ Matched l+ and Reτ data for l/d investigation.
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A= 5.0). Hot-wire-measured mean velocities can only be considered accurate to (at
best) 1 % (see for example Jørgensen 1996). This error will be included in the Uτ

estimate from the Clauser method, along with additional errors due to the regression
fit. In addition, the precise choice of constants for the logarithmic region are also under
debate (Nagib & Chauhan 2008). Use of the Clauser technique with altered constants
(κ and A) will yield different estimates of Uτ . For the highest Reynolds-number data
measured here, the use of κ = 0.384 and A= 4.173 as suggested by Nagib & Chauhan
(2008) yields a value of Uτ that is 1.2 % lower than that obtained with κ = 0.41
and A= 5.0. (The difference is less severe at lower Reynolds numbers.) Capitalized
velocities (e.g. U ) and overbars indicate time-averaged values. The superscript + is
used to denote viscous scaling of length (e.g. z+ = zUτ/ν), velocities (U+ = U/Uτ ) and
time (t+ = tU 2

τ /ν). The friction Reynolds number Reτ (also known as the Kármán
number) is given by δUτ/ν, where δ is the boundary-layer thickness determined from
a modified Coles law of the wall/wake fit to the mean velocity profile (see Perry,
Marusic & Jones 2002). It must be noted that all boundary-layer traverses described
here have logarithmic wall-normal spacing, and thus the spacing towards the edge
of the boundary layer is quite large. For this reason the estimate of δ should only
be considered accurate to ±4 %. This uncertainty will extend to Reτ . The length
of the platinum sensing element is given by l and l+ (=lUτ/ν) in physical and
viscous-scaled units respectively. The wire diameter is given by d and the length-
to-diameter ratio by l/d . The sampling frequency and low-pass filter settings are
denoted by fs and flp respectively. The non-dimensional sample interval is given by
�t+(= �tU 2

τ /ν, where �t = 1/fs). The total length in seconds of the velocity sample
at each height is given by T . This is non-dimensionalized in outer scaling to give
boundary-layer turnover times T U∞/δ. For converged statistics, these numbers need to
be large. The largest structures in boundary layers can commonly exceed 20δ (Kim &
Adrian 1999; Hutchins, Ganapathisubramani & Marusic 2004; Ganapathisubramani,
Clemens & Dolling 2006; Guala, Hommema & Adrian 2006; Hutchins & Marusic
2007b; Monty et al. 2007), and we would typically require several hundreds of these
events to advect past the sensor array before we could expect converged statistics.
For facilities such as the HRNBLWT, where high Reynolds numbers are attained
with a very thick boundary layer and relatively low flow speeds (ensuring a large
viscous scale), this requires sampling for up to 10 minutes at each wall-normal station
(total experiment times of up to 11 hours per traverse). For completeness, table 1
also includes the ratio of the sensor length to an estimate of the Kolmogorov length
scale (η). Estimates for η are problematic, especially in boundary layers in which η

varies with wall-normal position. Here, following Morrison et al. (2004), we use an
estimate of η at z/δ = 0.1 using the local-equilibrium approximation of the dissipation
rate.

3. The near-wall peak in streamwise turbulence intensity
One issue of some controversy in wall-bounded turbulence has been that of the

near-wall peak in inner-scaled streamwise broadband turbulent energy (u2/U 2
τ |m).

The subscript m refers to the peak value. Whilst there appears to be good general
agreement concerning the inner-scaled wall-normal location of this peak (with
z+

m ≈ 15 ± 1 widely reported), the measured magnitude continues to exhibit significant
variation between studies. There are numerous factors that could contribute to this
error, and a detailed discussion of these is given in § 3.3. For now we concentrate on
the two most significant of these: non-dimensional wire length (l+) and the Reynolds



Hot-wire anemometry spatial resolution 109

10

9

8

7
u2

mU2
τ

6

5

4

3
102

Purtell et al. (1981) Nickels et al. (2007)
Ligrani & Bradshaw (1987)

Hutchins & Marusic (2007a)

Balint et al. (1991)¶
Erm & Joubert (1991)
Andreopoulos et al. (1984)
Bhatia et al. (1982)

Hites (1997)††

Current study
Morrison et al. (2004)†

Osterlund (1999)
Monty (2005)
Fernholz et al. (1995)

Lofdahl et al. (1989)

Hites (1997)||

Johansson & Alfredsson (1983)

† Only l/d = 200 data; ‡only d = 1.25 μm and d = 2.50 μm data; 
¶ nine-sensor vorticity probe; || tunnel floor, data only available 

at z+ ~~ 24 for highest two Reτ; †† Smooth cylinder, have not 
included d = 1.3 μm; ‡‡ Hot-film measurments in water, l/d ~~ 20.

103

Reτ

104

Figure 1. Reynolds-number variation of the peak measured value of the inner-scaled

streamwise turbulence intensity (u2/U 2
τ |m) for various hot-wire experiments.

number (Re). In a study that has become the benchmark for hot-wire design, LB87
have definitively shown that l+ can significantly effect the measured values of u2/U 2

τ |m.
Their results were obtained at a single Reynolds number. More recently there has
been a growing acceptance that the near-wall peak does not scale exclusively with
Uτ and instead exhibits a weak Re dependence (Klewicki & Falco 1990; DeGraaff &
Eaton 2000; Metzger & Klewicki 2001; Metzger et al. 2001; Marusic & Kunkel 2003).
A large outer-scale influence on the near-wall region becomes increasingly noticeable
with Reynolds number, as a result of which u2/U 2

τ |m has been found to increase with
Re (see for example Hutchins & Marusic 2007a). In order to discern this trend the
above studies attempted to isolate wire-length effects by considering only the data
acquired with l+ � 10 (with the exception of Klewicki & Falco 1990, who applied a
correction for l+).

3.1. The near-wall peak as a function of l+ and the Reynolds number

For figure 1 we compile data for u2/U 2
τ |m from numerous studies over a wide range

of l+ and plot these against Reτ . The inclusion of higher-l+ data tends to afford
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us access to higher-Reynolds-number results. The provisos for inclusion were quite
broad. We sought out quality measurements (attention to pressure gradient, free-
stream turbulence and the like) made with single normal hot-wire sensors in which
l/d > 200 (in order to isolate the effects of l/d; see LB87 and § 7). Certain data are
discarded. The data of Ueda & Hinze (1975), often cited, are not included due to
insufficient l/d . The higher-Reynolds-number superpipe data of Morrison et al. (2004)
and the very short wires of Willmarth & Sharma (1984) are discounted for similar
reasons. We do not include those data of Österlund (1999) which are tabulated as
having d = 1.27 μm. The d = 1.3 μm data of Hites (1997) are not included, in deference
to the calibration drift reported. It should be noted that figure 1 includes data from
both external and internal flows (the latter of which will have non-zero streamwise
pressure gradients). Further discussion of these effects is given in § 3.3.2.

Plotted against Reτ , the scatter in u2/U 2
τ |m shown in figure 1 is large. There is

some indication that the peak intensity might be rising with the Reynolds number,
but for the most part this is obscured within the large scatter of data. The key
to understanding this plot is to consider simultaneously the effects of l+ and the
Reynolds number on the near-wall peak in streamwise intensity. When figure 1 is
replotted in three dimensions with l+ as the z ordinate, as shown in figure 2(a), the
data appear to collapse down rather well on to a surface. For clarity, figure 2(b) shows
an amended version of the original plot, with each symbol coloured according to l+

(with the colour-scale given to the right of the plot). The colour contours displayed in
the background (and the mesh surface in figure 2b) show the best fit to the compiled
data obtained by nonlinear least squares regression fit to the form

u2

U 2
τ

∣∣∣∣∣
m

= A log10 Reτ − Bl+ − C

(
l+

Reτ

)
+ D (3.1)

A 1.0747 B 0.0352
C 23.0833 D 4.8371

Term 1 of this equation assumes that in the absence of spatial resolution effects, the
near-wall peak in streamwise intensity will grow log linearly in Reτ (in accordance
with Metzger et al. 2001; Marusic & Kunkel 2003). Term 2 assumes a linear decay
in the near-wall peak due to increasing l+. A linear decay was chosen based on an
initial analysis of the experimental data at higher Reynolds numbers (see figure 4).
Term 3 is an l/δ term and accounts for attenuation of δ-scaled events by wires in
which l is a substantial portion of the boundary-layer thickness. This term provides
the requisite twist to the surface at low Reynolds number.

The compiled data cover the range 3 < l+ < 153 and 316 <Reτ < 25 000 (although
the coverage of data is by no means homogeneous within this range). The root-
mean-square residual error for this surface fit is 0.6 in predicted u2/U 2

τ |m. Of course,
this surface fit is an oversimplification, and there are obvious outliers. See § 3.3 for a
more thorough discussion of the limitations of this fit. For now however, as a first
attempt at fitting to limited scattered data, the surface given by (3.1) can explain
some interesting trends in past results.

The solid black symbols in figure 2(b) show DNS channel-flow data of Iwamoto
et al. (2002), del Álamo et al. (2004) and Moser, Kim & Mansour (1999). As a
simple first-order approximation we might equate the spanwise grid spacing �y in
simulations to wire length l. For all DNS data shown in figure 2(b), the grid spacing
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Figure 2. Variation of the peak value of the inner-scaled streamwise turbulence intensity with
the Reynolds number and l+ for various experiments: (a) on three-dimensional axis; (b) with
symbols coloured according to l+ (see colour scale). See figure 1 for symbol key. Transparent
coloured surface in background shows (3.1) evaluated over data range; � shows DNS data

of Moser, Kim & Mansour (1999), Iwamoto, Suzuki & Kasagi (2002) and del Álamo et al.
(2004); shows LDV data of DeGraaff & Eaton (2000). The dashed line shows the similarity
formulation of Marusic & Kunkel (2003) (1.036 + 0.965 loge Reτ ). Square symbols with bold
outline show the matched l+ Melbourne data.

is in the range 3 � �y+ � 6. It can be seen that these data follow quite well the
edge of the coloured surface (which is (3.1) evaluated at l+ =3). However, the DNS
data seem to exhibit a slightly stronger growth in the peak intensity with Reτ . It
must be cautioned that some of these channel-flow simulations will be subject to
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pressure gradient effects (since the viscous-scaled streamwise pressure gradient p+
x

becomes significant at low Reynolds numbers; see Nickels 2004). The LDV data of
DeGraaff & Eaton (2000) are also included in figure 2(b) as the solid grey symbols.
Again, although these data are close to the edge of the coloured surface, the rise
with Reynolds number seems marginally steeper than the general hot-wire-measured
trend. The measurement volume quoted by DeGraaff & Eaton (2000) for these LDV
measurements is 60 × 35 μm in y and z respectively. For the Reynolds numbers
shown in figure 2(b) this ranges from approximately 1 × 0.6 to 7.5 × 4.4 wall units
(although it is debateable whether spatial averaging can really be assumed over an
LDV measurement volume). The dashed line in figure 2(b) shows u2/U 2

τ |m as predicted
by the similarity formulation of Marusic & Kunkel (2003), a simplified form of which
is given in Hutchins & Marusic (2007a). The lack of agreement between this curve and
the surface described by (3.1), and also the DNS and LDV data, might suggest that
the empirical constants used for these similarity approximations require adjustment.

In simple terms, figure 2 and the accompanying surface (3.1) show that the near-
wall peak in turbulence intensity is subject to two competing effects. Whilst it will
tend to rise with the Reynolds number, the measured value will drop with increasing
l+. For most facilities, if wire length l is fixed, this implies an approximately constant
l/δ. (This statement is exact for fully developed internal flows and, assuming a fixed
streamwise location, can be considered approximately true for external flows.) Thus
as an approximation we can state that l+ increases approximately linearly with Reτ :

l+ =
l

δ

δUτ

ν
∝ Reτ . (3.2)

This can explain the numerous studies (e.g. Mochizuki & Nieuwstadt 1996; Durst et al.
1998) that have reported no growth in u2/U 2

τ |m with Reynolds number. Rearranging
the surface fit of (3.1) we can obtain an expression for the variation in l+ with Reτ

that would be necessary to record a constant near-wall peak (E):

l+ =
A log10 Reτ + D − E

B + C/Reτ

. (3.3)

As an example, figure 3 shows l+ against Reynolds number for all zero-pressure-
gradient turbulent-boundary-layer data considered by Mochizuki & Nieuwstadt (1996,
who found no Re dependence for the near-wall peak). The solid line shows (3.2)
evaluated for l/δ = 0.01. The data are scattered, but in general the data used by
Mochizuki & Nieuwstadt (1996) exhibit an approximately linear growth with Reτ .
The dashed line shows (3.3) evaluated for E = 2.72 (the approximate constant proposed
by their study). Clearly the data they have considered exhibit a growth in l+ with
Reτ , which is very close to that required to give constant u2/U 2

τ |m. Hence it is easy
to understand how researchers have in the past arrived at the erroneous conclusion
that the near-wall peak in turbulence intensity (when scaled with Uτ ) is independent
of Reτ .

3.2. Is l+ = 20 small enough?

One of the key recommendations from LB87 is that l+ should be less than 20. This
stems from their assertion in the abstract that ‘the turbulence intensity, flatness factor
and skewness factor of the longitudinal velocity fluctuations are nearly independent
of wire length when the latter is less than 20–25 wall units.’ In this section we
reassess this remark in light of the available data. The data in LB87 are presented
in a way such that the effects of l+ are somewhat blurred within the effects of l/d
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Figure 4. Dependence of near-wall peak (u2/U 2
τ |m) on l+ for selected Reynolds numbers

and with l/d > 200 (�) (LB87) at Reτ ∼ 1000; �, other data from figure 1 in which
800 < Reτ < 1100; �, current study and Nickels et al. (2007) at Reτ ≈ 7300; �, current study
at Reτ ≈ 14 000. The solid, dashed and dot-dashed lines show (3.1) evaluated at Reτ = 1000,
7300 and 14 000 respectively.

(both of which were varied during experiments). To clarify this, figure 4 replots as
pentagram symbols only those data of LB87 for which l/d > 200. (The effect of l/d is
considered in more detail in § 7; for now we stick to the conclusion of LB87 that l/d

should exceed 200 for accurate measurements.) The dots in figure 4 show all other
data compiled in figure 1 for which 800 < Reτ < 1100 (Purtell, Klebanoff & Buckley
1981; Balint, Wallace & Vukoslavčević 1991; Erm & Joubert 1991; Österlund 1999;
Hutchins & Marusic 2007b). The accompanying solid line shows (3.1) evaluated at
comparable Re. Obviously the data exhibit scatter, yet in general we can see that
the error caused by using a wire of length l+ =20 is significant as compared to
an ideal wire of infinitely small size (l+ → 0). LB87 have stated that the measured
intensity

√
u2/Uτ |m changes by 4 % for l+ < 20–25. However the raw data of LB87
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in figure 4 and accompanying fit from (3.1) might imply that this error is optimistic.
Data from the HRNBLWT at Reτ ≈ 7300 and 14 000 are also shown in figure 4 by
the open and solid squares respectively. (The dashed and dot-dashed lines show (3.1)
evaluated at the respective Re.) It is clear in general that as we move to higher Re, the
percentage attenuation in the near-wall peak due to finite wire-length effects reduces.
The percentage error predicted from (3.1) due to a wire of length l+ =20 compared
to an ideal wire (l+ → 0) is given by

|% error|l+=20 = 100 × 20 (B + C/Reτ )

(A log10 Reτ + D)
. (3.4)

The absolute peak error is given by the numerator of (3.4) and will tend towards
a constant value as Reτ becomes large (i.e. as the l/δ term of (3.1) tends to zero).
This behaviour is later confirmed from decomposed signals in § 4.1. However, the fall
in percentage error with Re will continue indefinitely (since the denominator of (3.4)
increases as the logarithm of Reτ ). It will be shown in the following sections that this
is due to an increasing presence of large-scale fluctuations in the near-wall region
as the Reynolds number increases. Thus at elevated Reτ the small-scale fluctuations
amount to a decreasing proportion of the total broadband intensity at the location
of the near-wall peak, and hence percentage attenuation due to a given l+ will reduce
(see Hutchins & Marusic 2007b,a and § 4.1.1).

3.3. Issues related to the fitted surface

Though the surface described by (3.1) does a reasonable job at mapping the
distribution of experimental data, some scatter still remains. Aside from l+ and
Reτ , there are many other factors in hot-wire anemometry experiments that could
potentially influence u2/U 2

τ |m.

3.3.1. Experimental error

There are numerous sources of experimental error with hot-wire operation, all of
which can lead to errors in velocity measurements, turbulence intensities and, where
Clauser charts are employed, friction velocity Uτ . These include (but are not limited
to) drift in ambient conditions such as temperature (e.g. Cimbala & Park 1990),
humidity (e.g. Durst et al. 1996) and pressure drift (e.g. Nekrasov & Savostenko
1991); problems with wire degradation such as change in material properties due to
incomplete cleaning (Willmarth & Bogar 1977), electromigration (see Willmarth &
Sharma 1984) and wire fouling (Wyatt 1953); and wider problems with the facility
such as pressure gradients (Fernholz & Warnack 1998) and elevated free-stream
intensities (Hancock & Bradshaw 1989; Barrett & Hollingsworth 2003; Stefes &
Fernholz 2004). Many of the data included in figures 1 and 2 use Uτ values obtained
using the Clauser method (see § 2.4 for a description of the errors associated with this
technique). Ong & Wallace (1998) have pointed out that at low Reynolds numbers,
the Clauser method can systematically overestimate Uτ (as compared to the near-wall
velocity gradient). Consequently, the recorded values of u2/U 2

τ |m at low Reynolds
numbers in figures 1 and 2 could be strongly effected by this type of error.

3.3.2. Internal and external geometries

For the data considered here, no attempt has been made to differentiate between
internal and external geometries. It is possible that u2/U 2

τ |m and its Reynolds-number
dependence could be different for pipes and channels than for boundary layers.
Certainly there is growing evidence that the largest scale structures in the logarithmic
and wake regions of internal flows are different from those of flat-plate boundary



Hot-wire anemometry spatial resolution 115

layers. Through analysis of premultiplied spectra (kxφuu, where kx is the streamwise
wavenumber and φuu is the energy spectrum of streamwise velocity fluctuations), Kim
& Adrian (1999) have reported length scales of up to 14 pipe radii in pipe flows.
This is in contrast to peak length scales of 6δ found from similar measurements
in boundary layers by Hutchins & Marusic (2007a). By comparing the log-region
peak in kyφuu (where ky is the spanwise wavenumber) between channel DNS and
boundary-layer experiments (Tomkins & Adrian 2003; Abe et al. 2004; Kasagi et al.
2005), Hutchins & Marusic (2007b) have noted that the widths of the large-scale
structures in internal geometries are larger than those in boundary layers (by a factor
of approximately 1.6). Recently, Monty et al. (2007) have reiterated this tendency
through analysis of experimental channel and pipe correlations (see also Bailey et al.
2008). Since the growth in u2/U 2

τ |m with Reynolds number is due in some part to
the footprint imposed by the largest scales on to the near-wall region (Hutchins
& Marusic 2007a) and since these largest scales clearly differ between internal and
external flows, it is possible that, with sufficient data, it may be necessary to fit a
different surface (of the type shown by equation 3.1) to pipe and channel flows than
to flat-plate boundary layers.

3.3.3. Temporal resolution

Temporal resolution limits, imposed by the anemometry or any Nyquist filtering,
can cause additional attenuation of measured turbulent energy. See § 8 for a full
discussion of this phenomenon.

3.3.4. Lack of high-Reynolds-number data

The surface fit is also somewhat handicapped by a lack of reliable high-Reynolds-
number data. This is exacerbated by the fact that high-Re data tend to be attained
using larger l+ (see (3.2)). It would be dangerous to extrapolate this fit beyond the
limits shown in figure 2.

4. The ‘outer hump’ in broadband streamwise intensity: is it real?

It is not only the near-wall peak in u2/U 2
τ that is effected by the hot-wire length.

Figure 5(a) shows profiles of streamwise turbulent intensity for several viscous-scaled
wire lengths at Reτ ≈ 14 000. As l+ increases from 22 to 79, the near-wall peak is
diminished, and a secondary peak emerges in the log region of the u2/U 2

τ profile.
When l+ is increased still further, the near-wall peak disappears entirely, and the
log-region peak begins to fall in magnitude. It is also noted that the location of
any apparent outer hump seems to shift to higher z+ as l+ is increased. Figure 5(b)
shows the associated mean velocity profiles. Note that within the accuracy of hot-wire
measurements, the mean velocity profiles show no systematic variation with l+.

4.1. Decomposed turbulence intensities

We can obtain a clearer picture of the effects of spatial resolution on the broadband
turbulence intensity by decomposing the fluctuating velocity signals into a small-scale
(where λ+

x < 7000) and a large-scale (where λ+
x > 7000) contribution. For this we use a

simple cutoff spectral filter. The value λ+
x = 7000 is chosen after Hutchins & Marusic

2007b; λx is the streamwise wavelength of (Fourier-decomposed) fluctuations, defined
as 2π/kx , where kx is streamwise wavenumber. By integrating the surface above and
below this line we can decompose the broadband turbulence intensity into a small-
and a large-scale contribution. Figure 6 shows the resulting contributions for the wires
of various l+. Symbols are as given in figure 5, with the solid symbols showing the
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Figure 5. (a) Broadband turbulence intensity profiles in a fully developed turbulent boundary
layer at Reτ ≈ 14 000 using three different wire lengths. (b) Associated mean velocity profiles:
�, l+ = 22 (l/d = 200); �, l+ = 79 (l/d ≈ 360); ©, l+ = 153 (l/d ≈ 700). The solid line shows
U+ = (1/κ) ln(z+) + A (where κ =0.41 and A = 5.0). The dashed line shows u+ = z+.
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Figure 6. Turbulence intensity profiles decomposed into small-scale (λ+
x < 7000, solid symbols)

and large-scale components (λ+
x > 7000, open symbols). The symbols show different l+ as given

in figures 5 and 6. The lines show sum of small- and large-scale components for l+ = 22 (solid
line), l+ =79 (dashed line) and l+ = 153 (dotted line).

small-scale contribution and the open symbols showing the large-scale contribution.
Note that the small- and large-scale contributions for a given l+ sum to give the
broadband intensity shown in figure 5 (shown by the lines in figure 6). Though the
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Figure 7. Turbulence intensity profiles decomposed into small-scale (λ+
x < 7000, solid symbols)

and large-scale components (λ+
x > 7000, open symbols) for two different Reynolds numbers.

The dotted symbols (	· , �· ) show Reτ ≈ 7300. The plain symbols (	, �) show Reτ ≈ 14 000.
The triangular symbols (	· , 	) show l+ = 79. The square symbols (�· , �) show l+ = 22.

division is somewhat arbitrary and abrupt, the decomposed statistics are a useful
metric for understanding the broadband intensity, which we can consider to be the
sum of two competing modes: a small viscous-scaled component primarily located in
the near-wall region and a larger outer-scaled component peaking in the log region.
There is considerable overlap between these modes, with the large scale extending
down to the wall and a diminishing small scale influence penetrating to the edge of
the boundary layer.

As l+ increases, figure 6 shows that the measured small-scale energy is diminished.
The collapse of all open symbols, on the other hand, indicates that the large-
scale contribution remains approximately the same over the range of l+ considered.
(Even the longest wire at l+ = 153 only has l/δ ≈ 0.01.) Thus as l+ increases, we
are increasingly sensing only the large-scale contribution to the broadband intensity.
Eventually this will result in a ‘double hump’ in the spatially under-resolved broadband
intensity, ultimately giving way to the single outer hump with larger l+. Both of these
phenomena should just be considered as symptoms of the filtering of small-scale
fluctuations from the signal (and the subsequent uncovering of the large-scale mode).
The key point to note here is that small-scale energy extends a considerable distance
from the wall. Thus the spatial filtering due to largest wire length is evident in the
broadband intensity profile deep into the log region. (There is spatial filtering up to
beyond z+ = 1000 for l+ = 153.)

It is important to note that although we show here that there is no outer hump for
spatially well-resolved data up to Reτ = 18 830 (see § 4.3) and that within this limit
such a hump can only be present due to poor experimental resolution, this should
not necessarily preclude the possibility that at higher Reynolds numbers a legitimate
outer peak could emerge in the broadband intensity that is not resolution related.

4.1.1. Reynolds-number effects

Figure 7 shows similarly decomposed intensities for two different Reynolds numbers
and with two matched viscous-scaled wire lengths. In this case it is noted that the
small-scale contributions (solid symbols) collapse down on to two distinct curves,
dependant only on viscous-scaled wire length l+ and independent of the Reynolds
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number. In other words, the l+ = 22 wire records the same viscous-scaled small-scale
contribution regardless of the Reynolds number (solid square symbols). The same is
also true of the small-scale fluctuations measured by the l+ =79 wire (solid triangular
symbols). However, the opposite is true of the large-scale contribution. The large-scale
contribution (at a given Re) is effectively independent of l+ as shown by figure 6
(provided l/δ is small). However, as Reτ increases, figure 7 shows a very clear increase
in the large-scale contribution to intensity. This effect is important, since it explains
the form of the surface fit (3.1), particularly the decreasing percentage attenuation
due to a given l+ discussed in § 3.2 and shown by (3.4). Figure 7 seems to show
that the small-scale contribution is invariant with the Reynolds number, depending
only on the viscous-scaled wire length. However, as the Reynolds number increases
an ever-increasing large-scale contribution is present in the near-wall region. Thus at
elevated Reτ the small-scale fluctuations amount to a decreasing proportion of the
total broadband intensity, and hence percentage attenuation due to a given l+ (at a
fixed z+) will reduce with Reynolds number.

It must be cautioned that this can only be considered true with sufficiently high
Reynolds number (sufficient separation of scales). At low Reynolds numbers, a large
l+ will also be large in terms of l/δ and hence would be expected to attenuate some of
the large outer-scaled (δ-scaled) energy (see term 3 in (3.1)). Indeed as the Reynolds
number is reduced, the small-scale contributions defined by the crude spectral filter
λ+

x < 7000 will increasingly contain large outer-scaled contributions (see figure 3 of
Hutchins & Marusic 2007b).

4.2. The premultiplied energy spectra

The secondary outer hump exhibited by the spatially under-resolved intensities can be
explained through consideration of the energy spectra at each wall-normal position
across the boundary layer. This is shown for the three different wire lengths in figure 8.
These figures are formed by plotting isocontours through the surface constructed
from the one-dimensional premultiplied energy spectra of u fluctuations at each wall-
normal z position. This type of energy map is introduced and studied in detail in
Hutchins & Marusic (2007a ,b). In these studies it was shown that with high enough
Re, the energy map has two clear energetic peaks. The peak closest to the wall has
a location fixed in viscous-wall units (at λ+

x = 1000, z+ = 15) and has been termed
the ‘inner site’, representing energetic contributions due to the near-wall cycle. The
second peak occurs in the logarithmic region and has been termed the ‘outer site’,
with a location nominally fixed in outer units at λx ≈ 6δ, z ≈ 0.06δ. (Recently Mathis,
Hutchins & Marusic 2009 revised slightly these estimates over a larger range of
Reynolds numbers.) It was suggested by Hutchins & Marusic (2007a) that this outer
site might be the contribution due to the very long meandering features found to
populate the log region (and termed ‘superstructures’). The location of these two
peaks are shown by the + symbols in figure 8. The most resolved energy map of
figure 8(a) clearly exhibits these two energetic peaks. As l+ is increased, figure 8(b,c)
demonstrates that the fluctuating energy due to the near-wall cycle is increasingly
under-resolved, and the inner site starts to disappear. In addition to this, the measured
small-scale energy due to the attached eddies is also diminished by the longer wires.
This region is labelled in figure 8(a) and is visible in the energy map as inclined
contours in which the length scale λx scales with distance from the wall (i.e. λx ∝ z).
Attenuation in this region is highlighted by the dashed contour in plots (b) and (c)
which show the kxφuu/U 2

τ =0.2 contour for the shortest wire (l+ = 22). As was noted
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Figure 8. Contour maps showing variation of one-dimensional premultiplied spectra with
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τ = 0.2–1.8 in steps of 0.2. The dashed contours in (b) and (c)
show kxφuu/U 2

τ = 0.2 for l+ = 22. The symbols adjacent to the label refer to the data in
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x = 1000, z+ = 15) and outer (λx =6δ,
z = 0.06δ) energy sites as defined in Hutchins & Marusic (2007a). The dot-dashed triangular
region shows the location of the k−1

x plateau as given by Nickels et al. (2005).

previously for figure 6, the effects of spatial resolution are not merely confined to the
near-wall region.

To highlight this point, figure 9 shows the missing inner-scaled premultiplied
energy (χ) for (a) l+ = 79 and (b) l+ = 153 as an absolute reduction compared to that
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measured by the l+ = 22 wire:

χn =
kx(|φuu(λx, z)|l+=22 − |φuu(λx, z)|l+=n)

U 2
τ

. (4.1)

Together these plots indicate that spatial resolution issues can lead to substantial
errors for standard premultiplied energy spectra and that these errors can extend a
considerable distance beyond the immediate near-wall region. As discussed previously,
energy maps of this type are subject to complicated scaling, with a near-wall peak
scaling on viscous units, an outer-peak scaling on boundary-layer thickness and an
attached region scaling on distance from the wall z. It is thus unlikely that we can
reliably state a height (zmin) above which spatial resolution errors will be negligible. In
the past such attempts have been made (usually attempting to describe zmin as a linear
function of wire length). However, figure 9 would suggest that this approach will not
work. The lowest contour, drawn at χn = 0.05, extends to approximately z/l ≈ 4 for
the l+ =79 data. For the l+ = 153 wire, however, there are signs of spatial attenuation
to at least z/l = 9.

4.3. The HRNBLWT data with matched l+

Figure 10(a) shows the inner-scaled streamwise turbulence intensity profiles for all
Reynolds numbers measured in the HRNBLWT in which the inner-scaled wire length
was approximately constant (l+ ≈ 22). When viewed over this Reynolds-number range
(2820 < Reτ < 18 830) the growing large-scale contribution is clear, even from the
broadband result. The fact that this growing large-scale contribution extends down to
the wall leads to a steady growth in the magnitude of the near-wall peak (u2/U 2

τ |m)
with Reynolds number (see also the bold square symbols in figure 2b). The important
point to note here is that up to Reτ = 18 830, there is no outer peak in the broadband
intensity for spatially well-resolved measurements (l+ � 20) in the HRNBLWT. At
these Reynolds numbers, an outer peak can only be produced through attenuation of
certain turbulent scales due to large l+ (� 50–60). As an example of this figure 10(b)
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Figure 10. Turbulence intensity profiles (a) for all HRNBLWT profiles with matched
l+ ≈ 22 at Reτ = 2820, 3910, 7340, 13 620, 18 830; (b) a comparison of the HRNBLWT data at
Reτ = 18 830, l+ =22 (solid line) with the HRNBLWT data at Re =20 390, l+ = 115 (�).

shows a comparison of the well-resolved HRNBLWT data (Reτ = 18 830, l+ = 22) with
a profile taken with a larger wire (l+ =115, shown by the circles) at similar Reynolds
numbers. The resulting profile, in which the near-wall peak is completely absent
leaving just an outer hump, is remarkably similar to the result from the Princeton
superpipe at similar Reynolds numbers (Reτ = 19 700; Morrison et al. 2004). Note
however that a slightly longer wire is required in the HRNBLWT to obtain a similar
broadband intensity profile (l+ =115 for the HRNBLWT as compared to l+ = 76 for
the superpipe). It is important to remain open to the fact that differences may exist in
the broadband intensity profiles for flat-plate boundary layers and internal geometries
(such as pipes and channel flows). The energy spectra exhibit clear differences across
the log regions of internal and external geometries (see § 3.3.2), and it would not be
unreasonable to assume that this could extend to subtle differences in broadband
profiles. Ultimately, verification of this will have to await the availability of other
high-Reynolds-number pipe or channel-flow results (or new superpipe measurements
when smaller probes with more suitable l/d and l+ become available).

5. A closer look at k−1
x scaling

The attenuation of energy due to wire length detailed in figures 8 and 9 offers
clear insight into the seemingly contentious issue of k−1

x scaling. Such a region of
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self-similar scaling is predicted by the attached eddy model of Perry & Chong (1982)
and by scaling and overlap arguments (detailed most recently by Nickels et al. 2005,
2007). Nickels et al. (2005) found clear regions of k−1

x energy in experimental data at
Reτ ≈ 15 000. These regions were shown to scale with both inner and outer scalings
and hence are self-similar. However, other high-Reynolds-number studies have failed
to find such behaviour and have argued against its existence. Whether or not k−1

x

scaling exists, we can show here that the energy spectra within the mooted k−1
x region

is substantially effected by l+. As an example, Nickels et al. (2005) have predicted
that a k−1

x region will appear in the u spectra within the limits kxδ > 21 and kxz < 0.4
for z+ > 100. Hence from these limits one can deduce that a k−1

x region is only likely
to be present in the range of wall distances in which 100 < z+ < 2Reτ/105. The k−1

x

region (based on the limits of Nickels et al. 2005) is drawn in figures 8 and 9 by the
dot-dashed lines (showing λ+

x < 2πReτ/21, λ+
x > 2πz+/0.4 and z+ > 100). The vertices

of this triangular region are given by the (z+, λ+
x ) coordinates: (100, 500π), (2Reτ/105,

2πReτ/21) and (100, 2πReτ/21). Based on these empirical limits the k−1
x region will

only exist where Reτ > 5250. With the premultiplication shown in figure 8 any k−1
x

scaling would appear as a plateau within the triangular dot-dashed region describing
these limits. Whilst this is true for the most spatially resolved case of figure 8(a),
with the triangular region seeming to enclose a constant contour value (constant grey
shading), the spectra as measured with larger wires (figure 8b,c) show this region to
lie within a highly attenuated, sloping, region of the energy map. Although, the choice
of contour levels can effect the view from figure 8, it is clear that the triangular region
lies within a flatter or more plateau-like region for the smallest wire of figure 8(a).
Attenuation of the expected k−1

x region is also obvious for the missing energy maps
of figure 9. As wire length increases the triangular plateau region of expected k−1

x

behaviour is increasingly eroded by attenuation owing to spatial resolution. Thus
what ought to be a plateau in figure 8(a) becomes a gradient.

This eroding of the k−1
x region due to wire length is shown in a more traditional

format in figure 11(a), which shows premultiplied inner-scaled streamwise energy
at z+ = 100 (corresponding to the vertical dotted lines in figures 8 and 9). Note
that for this figure we use wavenumber (kx) rather than wavelength (λx = 2π/kx) for
consistency with Morrison et al. (2004) and Nickels et al. (2005). Clearly the k−1

x

plateau, evident with l+ = 22 (and evident at similar Reynolds numbers from Nickels
et al. 2005), is not present at all with l+ = 79 and 153, as the longer wires increasingly
attenuate the smallest scales. Figure 11(b) shows premultiplied spectra at z+ = 840,
corresponding to the location of the outer energetic site (0.06Reτ ). These spectra are
measured at locations at which z+ > 2Reτ/105 and hence have no plateau, a fact
consistent with the limits derived by Nickels et al. (2005). Note that in this instance
the signs of attenuation due to wire length are less acute, with only the l+ =153 wire
exhibiting attenuation in the range 0.0013 <k+

x < 0.04 (as predicted by the missing
energy plots in figure 9, where z+ = 840 is shown by the vertical dotted line).

Whether or not one subscribes to the hypothesis underpinning self-similarity and
k−1

x scaling, it is clear from Nickels et al. (2005) and figures 8(a) and 11(a) that
a plateau-like region exists in the premultiplied energy spectra when the flow is
sufficiently spatially resolved. Figure 11 shows that as l+ increases this plateau-like
region is increasingly eroded.

Figure 11 could explain the lack of a k−1
x scaling noted in the inner-scaled spectra of

Morrison et al. (2004), where spectra were shown for Reτ = 1500 and 106. The lowest
Reynolds number has inadequate separation of scales to see a region of self-similarity,
since there is no wall-normal position for which 100 <z+ < 2Reτ/105. The highest
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Figure 11. Premultiplied inner-scaled streamwise energy spectra at (a) z+ ≈ 100 (z/δ = 0.007)
and (b) z+ = 840 (z/δ = 0.06) for l+ = 22 (�), l+ = 79 (�) and l+ = 153 (©); Reτ = 14 000. The
dot-dashed lines in (a) enclose band of expected k−1

x collapse as given by Nickels et al. (2005).

Reynolds number meanwhile has a wire length of l+ =385 which will severely erode
the k−1

x region (see figure 11a). However, it is also the case that the energy spectra
in channels and pipes are different from those of turbulent boundary layers (due to
differences in the largest scales; see for example Kim & Adrian 1999; Hutchins &
Marusic 2007b; Monty et al. 2007). The approximate limits of Nickels et al. (2005)
are for boundary layers only and may not be applicable to internal geometries.

6. Kolmogorov scales
The dot-dashed inclined lines in figure 9 show λ+

x = 100(κz+)1/4. It is clear that these
lines transect a region of substantial missing energy. Since in the log region we can
approximate that η+ = (κz+)1/4, this would seem to imply that larger wires can cause
spatial attenuation in the region kxη =2π/100 ≈ 0.06, very close to the ‘spectral bump’
in the Kolmogorov-scaled energy spectra (Saddoughi & Veeravalli 1994; McKeon &
Morrison 2007). To illustrate this, figure 12 shows Kolmogorov-scaled streamwise
energy spectra for the three wire lengths at z+ = 1000 and 2100 (z/δ ≈ 0.07 and 0.15).
Here we use the approximation that production balances dissipation in the logarithmic
region; hence ε = (U 3

τ /κz) and η = (ν3/ε)1/4. It is clear that spatial resolution has a
large effect on these results. There is considerable attenuation occurring around the
location of the ‘spectral bump’ (as marked by the dashed line). This bump disappears
almost entirely for the longest wire. In addition, spatial resolution clearly governs
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Figure 12. Kolmogorov-scaled energy at (a) z+ = 1000 z/δ ≈ 0.07) and (b) z+ = 2100
(z/δ ≈ 0.15) at Reτ ≈ 13 620 for different wire sizes, l+ = 22, 79 and 153. The symbols are
as given in figure 11. The dashed lines show approximate location of ‘spectral bump’, kη = 0.05
(Saddoughi & Veeravalli 1994; McKeon & Morrison 2007). The dotted lines show 2πη/l for
the three wire lengths, l+ = 22, 79 and 153.

the appearance of any −5/3 scaling region (which would appear as a horizontal line
with this premultiplication), also changing the value of the apparent Kolmogorov
constant.

It is perhaps not surprising that a sensor length that is greater than the Kolmogorov
scale might effect the small-scale end of the spectra. However, it is crucial to note from
figure 12 that these effects extend to a surprising distance from the wall. Indeed, the
wire with l+ =79 exhibits substantial attenuation at z+ = 2100 (even though z/l > 26).
It is also important to recognize that attenuation due to spatial resolution reduces
the energy content of wavenumbers far below that which we might assume from local
isotropy. A normal hot wire of length l might be expected to attenuate structures
of spanwise width l and smaller. If an assumption of isotropy is made, then we
assume that these structures also have the same streamwise extent and would expect
the attenuation to appear at a streamwise wavelength comparable to the length of
the wire. If, however, the structures of spanwise width l are actually much longer
in the streamwise direction, then their attenuation by a wire of l will lead to attenuation
of streamwise wavelengths much greater than l (or at wavenumbers smaller than
kxη|max = 2πη/l). This effect is seen in our results. Figure 12 suggests that the effects
of spatial resolution extend at least to 2πη/30l for l+ = 79 (and beyond for l+ = 153).
For the three wire lengths shown in figure 12(a) the l/η ratios are 4.9, 17.6 and 34
respectively for l+ = 22, 79 and 153. The corresponding ratios for figure 12(b) are 4.1,
14.8 and 28.6.

7. The length-to-diameter ratio (l/d)
The second often-quoted recommendation from LB87 is that the length-to-diameter

ratio of hot-wire sensors should exceed 200 (l/d > 200) in order to minimize
attenuation caused by end conduction effects. This conclusion is largely based on
the variation of the measured near-wall peak (u2/U 2

τ |m) for various l/d and l+ values
(although at just a single, relatively low, Reynolds number). The pentagram symbols
in figure 13 show a compilation of measured u2/U 2

τ |m versus l/d for all LB87 data
where l+ < 10. Though these data are scattered, the basic trend seems to approximately
confirm the above conclusion. For l/d less than 200, there is a steadily increasing
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Figure 14. (a) Broadband turbulence intensity profiles in a fully developed turbulent boundary
layer at Reτ ≈ 14 000 using the same wire length l+ ≈ 22 and with different length-to-diameter
ratios, l/d = 200 (�), l/d = 100 (�) and l/d = 39 (�).

attenuation of the measured near-wall peak until by l/d = 100 this peak has been
reduced by approximately 17 %. Results from the HRNBLWT reconfirm this result
at higher Reynolds numbers. The square symbols in figure 13 show the corresponding
HRNBLWT results at Reτ ≈ 14 000, with matched l+ but three different l/d ratios of
200, 100 and 39. Note that all of these sensors have the same length (dimensional and
viscous-scaled) with the only difference in probe geometry being the wire diameter
(which is 2.5, 5 and 12.5 μm for the l/d =200, 100 and 39 wires respectively). Again,
these data reinforce the conclusion of LB87, showing that insufficient l/d reduces
the magnitude of the measured near-wall peak. As an example, for l/d = 100 the

measured near-wall peak at Reτ ≈ 14 000 is reduced to approximately u2/U 2
τ |m = 7.7

as compared to 8.4 for l/d = 200. The functional form (3.1) indicates that this level
of attenuation is more normally associated with l+ ≈ 33 (when l/d � 200).

Unfortunately, the investigation of LB87 into length-to-diameter ratio focused
solely on the effects of l/d on the near-wall peak in streamwise broadband intensity.
Figure 14 expands on this view, by showing the full broadband intensity profiles
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associated with the peaks discussed above. Figure 14 indicates that the effects
of insufficient l/d extend far beyond the near-wall region, affecting the recorded
broadband intensities throughout the boundary layer. This is an important result and
would seem to indicate that insufficient l/d can cause substantial errors in measured
broadband intensities, even when the distance from the wall z+ and the wire length
l+ might otherwise suggest that the sensor is spatially resolving most of the energy.
Clearly attenuation due to insufficient l/d is a quite separate issue from spatial
resolution effects. Unlike attenuation due to spatial resolution, the attenuation due
to insufficient l/d seems to occur at all distances from the wall and at all energetic
length scales up to λx ≈ 2δ.

7.1. Reynolds-number effects for l/d

Through numerical solution of the steady-state heat-balance equation for a hot-wire
filament and its support stub, Li et al. (2004) showed that the end conduction depends
on the length-to-diameter ratio, the stub length, hot-wire material and the wire
Reynolds number (Rew = Ud/ν). They defined the measure σ as the ratio of relative
end conduction compared to the total heat loss from the wire (forced convection to
the fluid plus end conduction). Based on the measurements of Champagne, Sleicher
& Wehrmann (1967), Li et al. (2004) suggested the baseline σ � 7 % as a design
parameter for hot-wire probes. With this established they were able to recommend,
for a given wire material, stub geometry and Reynolds number, the necessary l/d

for ‘accurate measurements’, and simplified expressions are provided to aid in this.
As a cautionary note, though the choice of σ � 7 % can be made to yield l/d ∼ 200
in keeping with LB87 (although only with appropriate choice of stub length, wire
material, Reynolds number and the like), its choice should be viewed as somewhat
arbitrary. Nonetheless, the work of Li et al. (2004) is very useful in demonstrating
that the appropriate choice of l/d is dependent on many factors of probe geometry
and more importantly Rew . Their results clearly indicate that a lower l/d ratio
(than that recommended by LB87) should be permissible at higher wire Reynolds
numbers. The data of LB87 shown in figure 13 have a wire Reynolds-number range
0.2 � Rew � 1.8. For the HRNBLWT data in figures 13 and 14, the l/d =200 wire
has 1.3 � Rew � 3.3 across the boundary layer (from 15 < z+ < 14 000), whilst the
l/d = 100 wire has 2.7 � Rew � 6.7 and the l/d = 41 wire 5.7 � Rew � 15.7. Thus
the results in § 7 can only really prove the lack of suitability of l/d � 200 within
this Rew range. However, although figure 12 certainly shows that the degree of
attenuation between l/d = 200 and l/d =100 does reduce somewhat with Reynolds
number, the suggestion is that this change is only a very weak function of Reynolds
number.

Ultimately these issues will not be resolved until an in-depth experimental study
is conducted, in which a number of full broadband intensity profiles are presented
at a wide range of l/d and Rew . Such a study would be complex, requiring a large
selection of wire diameters. Complications arise, since in order to maintain constant
l+, Rew will increase as l/d is reduced (which is true of the data in figure 13). In the
interim, figures 13 and 14 would seem to suggest that it is prudent to maintain the
length-to-diameter ratio at the level suggested by LB87.

8. Temporal resolution
In considering the effects of resolution we have thus far restricted our treatment

to just the spatial attenuation owing to hot-wire length l. However, there is also
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an effective temporal resolution imposed by the experimental set-up, which will be
discussed briefly here. The temporal and spatial resolution requirements are intimately
related through Taylor’s hypothesis. To avoid attenuation, the spatial length of a
single normal hot wire must be sufficiently small to resolve energetic scales of a
given spanwise width. In much the same manner, the overall temporal resolution of
a measurement system must also be sufficiently fast to resolve a structure of a given
streamwise length as it advects past the sensor (at a given convection velocity). The
actual relationship is complicated, since it depends on details of the flow structure,
which in many instances cannot be considered isotropic. However, in general it should
be obvious that in fast, high-Reynolds-number flows, the temporal resolution needs
to be increased (as the convection velocity increases and the size of the smallest scales
reduces).

8.1. A maximum flow frequency

First we will demonstrate, through analysis of experimental data, the existence of
an approximate ‘maximum flow frequency’ fc for boundary-layer measurements.
Figure 15 shows a comparison of premultiplied energy spectra at z+ = 15 for the
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two wall-normal locations: (shaded region) z+ =15 and (hatched region) z+ = 70. The filled
regions show the spread in percentage error due to the Reynolds number from Reτ = 2820
(upper bound) to Reτ =18 830 (lower bound). The vertical dotted line shows t+co = 30. (b) A
zoomed detail at small t+co (see the dotted line in a).

complete set of Reynolds numbers in which non-dimensional wire length is matched
(l+ =22). In terms of the viscous wavelength λ+

x , figure 15(a) indicates that the
small-scale end of the spectra collapses well over the range of Reynolds numbers
considered (with the only noticeable Re effect appearing as ever-increasing amounts
of large-scale energy centred around 3 < λ+

x /Reτ < 6). At all Reynolds numbers, the
energy is negligible for λ+

x � 30. In this case λ is defined from a time signal using the
local convection velocity U+. At z+ = 15 the inner-scaled mean velocity profiles fall
on to a single curve (with U+|z+ = 15 ≈ 11; see the inset in figure 15a). Hence, it is easy
to understand that these spectra will be similarly well matched in terms of a viscous
time scale,

t+ =
tU 2

τ

ν
=

λ+
x

U+
, (8.1)

as shown in figure 15(b). Since the hot-wire data are discrete time series, there is no
convection velocity used to calculate t+ for the abscissa of figure 15(b). This plot
would imply that (at z+ = 15) turbulent energy is largely contained in scales for which
t+ � 3. Figure 15(c) shows an approximate bounding contour for the full energy
map (as a function of z+ and t+). The contours show kxφ

+
uu = 0.05 for all Reynolds

numbers with matched l+ ≈ 22. (This contour level is shown by the horizontal dotted
line in figure 15b.) We can see that the high-frequency part of the contours collapses
well in terms of t+ for all Reynolds numbers considered. In addition, it is clear that
turbulent information with small t+ (�10) is present throughout the log region of
the boundary layer, and thus temporal resolution should not be considered as just
a near-wall issue. In fact, the smallest time-scale events seem to occur not at the
location of the near-wall peak but at z+ ≈ 70.

As further proof of an effective maximum flow frequency, figure 16 shows percentage
errors in measured broadband intensities due to a sharp spectral cutoff filter applied
(during post-processing) at various t+. Figure 16 is, in effect, constructed by integrating
the area beneath the energy spectra such as the ones shown in figure 15(b) to the
right of a sharp cutoff. The raw fluctuating signals used for this analysis are all
temporally well resolved. The frequency response of the anemometer/probe system
fa is in all cases set to approximately 70–100 kHz (as determined by injecting a
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2 kHz internal pulse at the bridge), yielding 7.8 >f +
a > 1.7 for 2820 < Reτ < 18 830.

Similarly, the frequency of the analogue low-pass filters flp is in all cases set to
approximately half of the sampling frequency fs , chosen such that f +

lp > 0.94. Thus,
in terms of equipment, there is no obvious temporal constraint on energy that has a
time scale larger than t+ ≈ 1. Hence, the process shown in figure 16 is analogous to
simulating a sharp cutoff due to insufficient anemometer response or poorly chosen
low-pass filters. The precise quantitative error is dependent on Reτ , with the upper
bound of the shaded area showing the lowest Reynolds-number result (Reτ = 2820)
and the lower bound showing the highest Reynolds number result (Reτ =18 830).
There would also be an expected sensitivity due to l+ (although in this instance
l+ is constant), since both Reτ and l+ will alter the relative proportions of small-
and large-scale energy recorded at a given wall-normal location. For figure 16 we
show results at only two wall-normal locations: z+ =15 close to the near-wall peak
(shaded) and z+ = 70, which figure 15(c) would indicate is the location of the highest
frequency contributions (hatched). Indeed we can see that at smaller t+

co (figure 16b),
the percentage attenuation at z+ = 70 is more acute than at z+ = 15. However, in all
instances the form of this curve is the same; namely the error seems to be very small
(<0.1 %), provided that the fluctuations are temporally resolved to t+ ≈ 3.

Thus we can establish a maximum flow frequency for boundary-layer measurements
of

fc �
U 2

τ

3ν
. (8.2)

Typical quoted frequency responses of commercially available anemometers are in the
range 30 < fa < 100 kHz. This imposes an effective Reynolds-number limit beyond

which it is unlikely that the smallest scales of u fluctuation (and hence u2/U 2
τ |m) are

correctly resolved. For the most part, the data considered for figures 1 and 2 are
within these approximate limits. However, it is noted that the highest Reτ data of
Fernholz et al. (1995) will require (by (8.2)) that fa > 78 kHz, which may be close to
the limits of some commercial units. By contrast, the data in the HRNBLWT benefit
from large viscous scales, and hence comparable Reynolds numbers (Reτ ≈ 19 000)
are fully temporally resolved with a somewhat slower anemometer response of fa > 20
kHz. Regardless, it is clear that some of the laboratory data shown in figures 1 and 2
are approaching an effective Reynolds-number ceiling with conventional anemometer
technology. Such considerations become especially pertinent when one considers the
results of Khoo et al. (1999) and Li (2004), both of which have indicated that the
actual response of the combined hot-wire sensor/constant-temperature anemometry
system could be up to an order of magnitude less than that indicated by a standard
sine/square-wave perturbation test. Also Comte-Bellot (1976) and Freymuth (1977b)
have discussed the nonlinear response of hot-wire anemometers, both showing that
rapid high-magnitude fluctuations can substantially reduce the useful frequency range
of anemometers. In addition to this, the f 2 behaviour highlighted by Saddoughi &
Veeravalli (1996) and the transient thermal response of the hot-wire sensor (Morris
& Foss 2003) would seem to impose additional limits on the use of anemometers at
high frequencies. The solution to this problem probably lies in improved performance
anemometry or in ‘bigger and slower’ facilities; of the latter case, the atmospheric
surface layer is an obvious example. (For the study of Metzger & Klewicki 2001
or Kunkel & Marusic 2006 an anemometer response fa < 500 Hz is sufficient to
temporally resolve the atmospheric surface layer at Reτ ∼ 1 × 106.)
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8.2. An example of a boundary-layer measurement made with insufficient anemometer
response fa

The purpose of this section is to highlight the effect on measured turbulence statistics,
when an anemometer system imposes a cutoff frequency that is deliberately set to be
less than specified by fc. Note that the wire length is l+ = 22 for all measurements
presented here. The only difference is the temporal resolution of the system.

The frequency response of the AN-1003 anemometer was altered by modifying
four capacitors (C31, C24, C19 and C5) on the channel board. These alterations
were originally made to facilitate balancing the bridge with very small-diameter hot
wires (since the ferrite core on the AN-1003 does not provide sufficient adjustment to
such small wires). However, it rapidly became apparent that this modification had in
fact drastically reduced the frequency response of the anemometer/probe system. For
this reason, we eventually used an in-house MUCTA anemometer to make the final
measurements with 1.5 μm wires. However, the comparison between the MUCTA
and the modified AN-1003 measurements offers useful insight into the detrimental
effects of temporal resolution issues. The solid and dashed lines in figure 17(a) show
a comparison of the broadband streamwise intensities for the MUCTA and modified
AN-1003 channels respectively. Reducing the channel frequency response has resulted
in a pronounced attenuation of the intensity profile. Indeed, in spite of the fact that
the flow is spatially well resolved (l+ ≈ 22), the modified channel exhibits an outer-
hump-type behaviour as typified previously by experiments with large l+. In this case,
the additional attenuation is believed to be due to the reduced temporal resolution
of the modified bridge. As an example of this, the + symbols show the original
temporally well-resolved MUCTA data with a spectral low-pass filter applied during
post-processing at a sharp cutoff of t+ =30. It is noted that other than in the very
near wall (z+ < 30) this filtered intensity profile models very closely the actual profile
recorded by the modified bridge. Thus a sharp cutoff is proven to be a reasonably
effective tool in modelling the effects of temporal resolution on broadband turbulence
intensities. Figure 17(b) shows energy spectra at z+ = 15 for the MUCTA, modified
AN-1003 and spectrally filtered data. In practice, the modified AN-1003 (dashed
curve) does not impose a sharp cutoff at t+ = 30 (as modelled by the spectral filter,
shown by the + symbols), producing instead a more gradual attenuation but one
that is still loosely centred around t+ = 30. Figure 17(c) shows the missing energy in
the modified AN-1003 premultiplied spectra, as compared to the data taken with the
MUCTA anemometer. Again, though there is no well-defined sharp cutoff, it is clear
that the missing energy is centred around t+ = 30 at all wall-normal locations.

9. Conclusions
New experimental hot-wire data have been presented across a large range of

Reynolds numbers (2820 < Reτ < 18 830) and with careful matching of the viscous-
scaled length of the hot wire. Using these and other previously published data, we
have considered the issue of spatial resolution in turbulent boundary layers. The
principle findings of this study are summarized by the following points:

(i) The near-wall peak in inner-scaled streamwise turbulence intensity. The recorded
value of u2/U 2

τ |m is subject to the competing effects of the Reynolds number and l+.
As the Reynolds number is increased, there is an increasing presence of large-scale
energy in the near-wall region, whilst the small-scale energy remains approximately
the same (see § 4.1). Thus, the net effect of increasing Reτ is an increase in the recorded
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Figure 17. (a) Broadband turbulence intensity profiles of u fluctuation and (b) premultiplied
energy spectra at z+ = 15 for (solid line) temporally well-resolved data, l+ = 22 and
Reτ = 18 830, MUCTA anemometer; +, same data spectrally filtered during post-processing at
t+ = 30; the dashed line represents modified AN-1003 channel with l+ = 22 and Reτ ≈ 18 000.
(c) A map of the missing premultiplied streamwise energy spectra (kxφuu/U 2

τ ) for the modified
anemometer (as compared to the MUCTA-measured data).

value of u2/U 2
τ |m. As l+ is increased, the recorded small-scale fluctuation becomes

increasingly attenuated (whilst the recorded large scales are effectively unmodified;
see § 4.1). Thus the net effect of increasing l+ is a reduction in the measured near-wall
peak u2/U 2

τ |m. Consideration of these competing effects provides some explanation

for the wide scatter exhibited by previous measurements of u2/U 2
τ |m (figure 1). When

u2/U 2
τ |m is plotted against l+ and Re, the available data seem to lie approximately

within a common surface (figure 2). A preliminary empirically derived functional
form is provided to describe this surface (3.1).

(ii) The outer hump in streamwise turbulence intensity. In this case we show that the so-
called outer hump is most likely a symptom of spatial resolution issues, at least for the
Reynolds numbers investigated here. No outer peak is present up to Reτ = 18 830 for
well-resolved turbulent intensity profiles made in the HRNBLWT facility. Only when
the length of the wire is increased beyond l+ ≈ 50–60 (or when some temporal cutoff
is applied; see below) do we begin to see signs of a secondary peak in the broadband
intensity profile. Analysis of decomposed statistics (§ 4.1) and fully mapped energy
spectra (§ 4.2) indicate that the larger wires attenuate the smaller-scale fluctuations
and reduce the magnitude of the near-wall peak. The secondary peak in broadband
intensity up to Reτ = 18 830 is effectively just the large-scale contribution in the
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log region, in the absence of the superimposed small-scale activity. It is noted that
these attenuated small scales are not solely confined to the near-wall region and
extend throughout the log region. Thus the effects of spatial resolution can extend a
surprising distance from the wall. At very high Reynolds numbers, the existence of
an outer hump should remain an open possibility. If the large-scale energy shown
in figure 6 continues to grow indefinitely with Reτ (whilst the small scale energy
remains constant) a genuine outer hump could conceivably emerge in the broadband
intensity at some given Reτ . Note, however, that any such Reynolds number would
be very large, since the growth of the log-region energy is slow (approximately scaling
as log Reτ ). Indeed, Marusic, Hutchins & Mathis (2009) and Mathis et al. (2009)
have recently predicted such behaviour at very high Reynolds numbers, showing
through extrapolation of experimental data that the large-scale energy will exceed the
near-wall peak at Reτ ≈ O(106). The issue for this study is whether the secondary
peak observed in the broadband intensity at lower Reynolds numbers may be due
to spatial resolution, and all evidence considered points to such a scenario. However,
it is also important to remain open to the possibility that differences may well exist
between the broadband intensity profiles of internal and external geometries.

(iii) The k−1
x region. As l+ increases, the region of the premultiplied energy spectrum

in which we would expect a self-similar plateau is increasingly eroded by the effects of
spatial resolution. Nickels et al. (2005) have previously shown that a k−1

x region will
only exist close to the wall (z+ < 2Reτ/105) and in high-Reynolds-number boundary
layers (Reτ > 5250). Here we add the additional proviso that the k−1

x behaviour will
only be evident in the spectra when l+ is small (∼ 20).

(iv) Kolmogorov-scaled spectra. Not surprisingly, we find that the Kolmogorov-scaled
spectra is also greatly influenced by spatial resolution effects. The appearance of any
−5/3 behaviour (and subsequent Kolmogorov constant) along with the magnitude
of the spectral bump (as noted by Saddoughi & Veeravalli 1994) are all heavily
influenced by attenuation due to wire length. In addition, we note that the effects of
wire length on the Kolmogorov-scaled spectra extend to considerable distances from
the wall and persist to wavenumbers a good deal lower than those which we might
assume from simple isotropic assumptions.

(v) Length-to-diameter ratio (l/d). At Reτ = 14 000 a wire with l+ ≈ 22 and l/d =100

experiences a severe attenuation of the near-wall peak (u2/U 2
τ |m), more in keeping with

a much longer wire of length l+ ≈ 33 (when l/d � 200). Such results are in keeping
with those of LB87. Perhaps more surprising is that insufficient l/d is a considerable
source of attenuation throughout the log region, causing a lower broadband intensity
(figure 14) and the appearance of secondary-peak-type behaviour at far lower l+ than
for wires with more normal length-to-diameter ratios (l/d = 200). This result suggests
that for the wire Reynolds numbers considered here, we should exercise caution in
any attempts to reduce l/d below the levels recommended by LB87. How these effects
extend to higher Reynolds numbers remains an open question.

(vi) Temporal resolution. If the experimental system (anemometry and Nyquist filters)
cannot resolve time scales down to t+ ≈ 3, there will be an additional attenuation
of hot-wire-measured energy, over and above that due to spatial resolution and
insufficient l/d . When temporal attenuation does occur, it can lead to the pronounced
outer-peak behaviour in the broadband streamwise intensities, as was observed
previously for wires with large l+. For most facilities, as the Reynolds number
increases, it will become increasingly difficult to guarantee the temporal integrity of
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measurements. In unpressurized air, the viscous-scaled time scale t+ = 3 will equate
to 100 kHz once Uτ exceeds approximately 2.1 m s−1.

In terms of very simple practical rules, the above conclusions would suggest the
following three guidelines for experimentalists:

(a) l+ as small as possible. Careful attention should be paid to this length. Where
comparisons are to be made across facilities or Reynolds numbers, it is preferable
to do so at matched l+. Where this is not possible, some attempt should be made
to account for the effects of spatial resolution. Provided l+ < 20, the available data
suggest that the error in u2/U 2

τ |m should be less than 10 % for Reτ 	 3000. (This
error in turbulence intensity will reduce at higher z+.)
(b) l/d � 200. The errors due to insufficient l/d can be severe. Although it may
be possible to relax this value at higher wire Reynolds numbers, until further
experimental validation is available, it may be best to err on the side of caution.
The present data show that this ratio should definitely not be relaxed to 100 for
Rew 
 6.
(c) t+ < 3 (f + > 1/3). The highest frequency information in a turbulent boundary
layer will increase as U 2

τ . It is necessary to ensure (as far as is possible)
that all experimental apparatus can resolve these time scales. In particular, the
anemometer/probe response and the cutoff due to any low-pass filters must exceed
this figure.
As a wider point, the use of hot wires with a large degree of spatial attenuation

is a useful and insightful experimental technique in its own right. Just as we can
learn much from complex signals through the application of filtering techniques
during post-processing, the same can also be true when we interrogate turbulent flows
using large sensing elements. By selectively skewing our measurements in favour of
larger-scale motions, we can uncover subtle phenomena which could otherwise have
remained hidden within an overwhelming presence of smaller, more energetic activity.
By way of example, the recognition of a Reynolds-number dependence for the near-
wall peak in broadband intensity has tended to accompany a parallel recognition
of the effects of spatial resolution. Only when we limit ourselves to studying data
with small wires (l+ � 10; Metzger et al. 2001; Metzger & Klewicki 2001; Marusic
& Kunkel 2003) or attempt to correct for the effects of l (Klewicki & Falco 1990)
do such effects become clear. The very fact that some researchers have found no
Reynolds-number dependence in u2/U 2

τ |m, in spite of the fact that the l+ of their
considered data has tended to increase with Reτ (which one would typically expect to
diminish the measured energy), indicates a growing presence of near-wall fluctuations
that are relatively impervious to spatial resolution; in other words, there is an
increasing presence of large-scale fluctuations in the near-wall region as the Reynolds
number increases. Such a presence is an important physical phenomenon and a
predicted consequence of certain physical models (i.e. the attached eddy hypothesis of
Townsend 1956 and Perry & Marusic 1995; see also the similarity solutions of Marusic
& Kunkel 2003). An even more obvious case in which spatially under-resolved flows
can provide clues to the underlying physics is in the prominent outer peaks observed
when wires with large l+ are used to measure broadband streamwise intensities. Away
from the near-wall region, there is a secondary energetic site, approximately centred
in the logarithmic region, in which the energy of very large-scale fluctuations seems to
reach a maxima. Traditionally, quite detailed studies of energy spectra are needed to
discern these largest scales (e.g. Kim & Adrian 1999; del Álamo et al. 2004; Hutchins
& Marusic 2007a ,b). However, by selectively skewing measurements in favour of just
the largest scale motions (by under-resolving the small-scale motions), attenuation
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due to spatial resolution can uncover a very interesting attribute of high-Reynolds-
number shear flows that would otherwise have not been obvious from well-resolved
turbulence intensity measurements.
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